
What is next in Autonomous Control Techniques?
Marı́a Dolores R-Moreno

European Space Research and Technology Centre (ESTEC)
European Space Agency

and
Departamento de Automática.
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Abstract

Spacecraft domains have become a popular area of AI re-
search due to the excitement created by the discoveries of
recent missions, for example on our neighboring planet Mars,
and the ever-increasing capability of spacecraft. With the cur-
rent US, Japan and European focus on launching spacecraft
for exploration, communication, broadcasting, or localization
tasks, among others, the automatic control of these machines
becomes an important problem. In this paper, we compare
recent directions in AI research with practice in current mis-
sions, using planning and scheduling, intelligent execution
and fault protection as examples. We attempt to synthesize
trends in both spacecraft operations and the use of AI tech-
nology, and suggest how they might impact future research
and its adoption by missions.

Introduction
For all of our history, humans have shown an interest in ex-
ploring, discovering and knowing what lies beyond Earth’s
boundaries. Many individuals, known and unknown, have
labored often with very few resources to reveal some of the
secrets of our solar system such as the distance to the sun or
the to the moon, the orbits and size of the planets, and so on.
The era of active space exploration started in the 1960’s due
to the aggressive competition between the USSR and USA
to achieve a landing on the Moon. Although a return to the
Moon is in the center of our sights, it is the red planet, Mars,
which is now focusing our attention.

Future missions such as NASA’s Mars Science Labora-
tory or ESA’s ExoMars require control systems that can
manage the severe resource constraints of these missions.
Advances in AI technology have the potential to help space-
craft such as the use of resources efficiently by responding
directly to their environments, to make spacecraft less ex-
pensive to operate, and to increase science return. It’s there-
fore interesting to consider how and why some AI technolo-
gies have been applied to missions in a straightforward fash-
ion, some have been applied in unexpected ways, and some
are still struggling to gain traction.

Planning, scheduling, sequence execution and fault pro-
tection are at once operations phases that are routinely car-
ried out for spacecraft and active topics of AI research. By
comparing and contrasting standard AI techniques in these
areas with the state of the practice on spacecraft missions,

we hope to provide insight into what kinds of infusion of AI
technology into missions has a high probability of success,
and some help in predicting what future areas research might
be adopted by missions.

This paper is structured as follows. First, we consider
planning and scheduling of activities. Planning is the prob-
lem of selecting activities such that they achieve one or more
goals and satisfy a set of domain constraints. Scheduling
addressing the problem of organizing activities in time such
that the resources during each activities execution are avail-
able. Typically, activities or commands carried out by a
spacecraft are planned and scheduled in advance. We dis-
cuss one flight experiment and one operational system where
AI Planning and Scheduling (P&S) was used on-board to al-
low spacecraft to autonomously select activities to respond
local conditions or science opportunities. We also discuss
the use of P&S technology in mission control centers and
the direction the technology has taken in order to work with
human planners rather than autonomously.

We next consider plan or sequence execution. All space
missions require execution systems that execute commands
and monitor the result. To enable the most efficient execu-
tion of plans and schedules, research has focused upon ex-
plicitly modeling scheduling assumptions during execution
and rescheduling the primary activities while they are exe-
cuted whenever a broken scheduling assumption is detected.
We consider a flight experiment that took this approach, and
discuss a number of operational systems that use time and
resource margin to enable a simpler execution semantics.
We discuss the recurring theme of trading theoretical peak
execution efficiency for simpler operations software, some
very reasonable motivations for taking this tradeoff, and how
research might respond.

Fault protection is an engineering process that incorpo-
rates robustness to faults into spacecraft hardware, software,
systems engineering and operations. We discuss the on-
board fault protection software on a recent spacecraft as well
as spacecraft flight experiments that incorporated model-
based diagnosis technology. Model-based diagnosis systems
are based on physical parametric constraints where a generic
software engine or set of principles is developed in the hope
of addressing a large class of diagnosis problems. We dis-
cuss some of the cost/benefit issues we see with model-based
diagnosis as a possible explanation for its lack of adoption.



For each of these areas, we conclude by summarizing the
trends we have observed in the missions and technologies
we surveyed.

AI Planning and Scheduling Systems
AI Planning and Scheduling (P&S) are two related areas
that initially evolved separately. AI Planning is a search
problem that selects activities such that they achieve one
or more goals and satisfy a set of domain constraints. AI
Scheduling addresses the problem of organizing tasks in
time. Given a set of activities, a scheduler must assign
start times and required resources to the activities, obeying
the temporal restrictions on the activities and the capacity
limitations of the resources. In the remainder of this section,
we briefly describe common approaches to P&S from the
literature. Then, we survey systems that have been used
in spacecraft operations. These systems typically perform
both P&S and, as in most applications the choice of actions
to achieve a goal is intimately tied to time constraints and
what resources are available. Finally, we discuss what we
believe to be trends in applications of P&S technology to
spacecraft operations.

Among the many planning techniques developed are:

• Partial Order Causal Link planners (Weld 1994) search
through the plan space. These planners must perform con-
straints satisfaction to ensure the consistency of the or-
der constraints. In order to avoid interferences between
actions, dependencies are recorded in a data structure
called causal links. Causal links must be checked peri-
odically during the planning process to make sure that no
other action can threaten them. In case a plan contains a
threat, some additional ordering constraints can be added
to avoid it.

• GRAPHPLAN-based planners search through a plan graph.
They alternate between graph expansion and solution ex-
traction. The graph expansion extends the plan graphs
forward until it has achieved a necessary condition for
plan existence. The solution extraction phase performs
a backward-chaining search on the graph, looking for a
plan that solves the problem. If no solution can be found,
the cycle repeats expanding the planning graph. The ba-
sic idea is to perform a kind of reachability analysis to
rule out many of the combinations and set of actions that
are not compatible.

• Heuristic Search Planners (HSP) transform planning prob-
lems into problems of heuristic search by automatically
extracting heuristics functions h from STRIPS encoding
instead of introducing them manually (Bonet & Geffner
1999). It uses a declarative language for stating problems
and a general mechanism for extracting heuristics from
these representations. The same code is then able to pro-
cess problems from different domains.

• A SAT-based planner takes a planning problem as an in-
put, guesses a plan length and generates a set of propo-
sitional clauses (CNF) that are checked for satisfiability.

After the translation is performed, fast simplification al-
gorithms as unit propagation and pure literal elimination
are used to shrink the CNF formula. For satisfying assign-
ment, a SAT solver can use Systematic (Liberatore 2000),
Stochastic (Selman, Levesque, & Mitchell 1996) or Incre-
mental (McAllester 1990) methods.

• HTN planners try to use the knowledge available of the
domain to solve the planning problem. This knowledge
can be obtained using additional task and goal structures,
search control techniques, interaction with humans or dif-
ferent type of constraints. A method maps a task into
a partially ordered network of tasks, together with a set
of constraints. The basic algorithm is to expand tasks
and resolve conflicts iteratively, until a conflict-free plan
can be found that consists only of primitive tasks. The
task network may contain conflicts caused by the interac-
tion among tasks: after each reduction, a set of critics is
checked so as to recognize and solve interactions between
this and any other reductions. Thus critics provide a gen-
eral mechanism for detecting interactions early, so as to
reduce the amount of backtracking.

• Probabilistic planners use probabilities to represent and
reason about uncertainty in the planning domain. That is,
when an action is selected the probabilities of the possi-
ble outcomes are evaluated. Additional actions may be
added to construct plans that are likely to succeed even
individual actions are uncertain. (Blythe 1999).

• A Markov Decision Process (MDP) expands the notion of
uncertainty. It is defined by an initial probability distri-
bution over all possible states of the system being mod-
eled, a distribution that represents the likelihood of the
system transitioning from the current state to each other
state given an action, and the reward for taking each action
in each state. Solving an MDP requires determining the ac-
tion in each state that maximizes the expected cumulative
reward of the system over time. Techniques based on pol-
icy iteration or value iteration (Puterman 1994) have been
traditionally used. This can be intractable for most appli-
cations, so most of the work in this area has focused on
using an approximation or abstraction of the state space.

For solving scheduling problems, we can consider two main
approaches:

• The Operational Research (OR) area. The most represen-
tative techniques are Linear Programming and Sensitivity
Analysis. This two techniques allow to find the optimal
solution of a function that satisfies a set of linear con-
straints, in the first case or the consequences in the so-
lution if some changes are made in either the data or in
some of the solution values, in the second case.

• Constraint Satisfaction Technology (CSP). A Constraint
Satisfaction Problem (CSP) prescribes some requirements
for a finite number of variables in the form of constraints.
The set of possible values, that is, the domain for each
variable is finite. Each constraint specifies a relationship
between the values of the variables that most hold. Solv-
ing a (CSP) means finding an assignment to each variable
such that all of the constraints are satisfied. Most of the



algorithms used for solving a CSP fall into these two cat-
egories:

– Refinement or Constructive Search Methods: a CSP
that progresses incrementally assigning values to vari-
ables, checking the constraints and backtracking when
violations appear. The evaluation of global criteria can
only be approximated given that there is only a partial
schedule.

– Iterative Repair or Local Search Methods: they start
with a complete assignment of values to variables and
then reassign new values to variables to resolve vio-
lated constraints. The evaluation of global criteria is
evaluated with low cost. However, one of the main dis-
advantages is that they can suffer from local minima
and they are often incomplete.

Applications of AI Planning and Scheduling
Table 1 lists a representative set of P&S technologies and
the missions for which they have been in experimental or
operational use.

DEVISER (Vere 1983) was used to develop plans for the
two Voyager spacecraft which photographed Jupiter, Saturn
and the outer planets. It is a general purpose planner that
generates plans by backward chaining from unordered sub-
goals. Unlike simple STRIPS planners, goals may have time
restrictions on when they are achieved and how long they
should be maintained. For each activity, a duration and a
start time window are presented. The output is a partially or-
dered network of activities. Partially ordered Deviser plans
were hand editing to produced fully scheduled sequences
that were executed on Voyager.

In a few cases, planning software has been run on-board
the spacecraft, with intent that the spacecraft could respond
to events by generating a new plan of action without wait-
ing for communication with operators on the ground. HSTS
was used in an experimental mode on-board the Deep Space
1 (DS-1) spacecraft, generating three plans that were au-
tonomously executed on board the spacecraft as a part of
the Remote Agent experiment (Muscettola et al. 1998;
Muscettola & Smith 1997). This experiment consisting of
a 20 hours scenario and a 6 hours scenario was the first time
an AI planner generated a plan on-board a NASA spacecraft
and also re-planned in order to accommodate a simulated
failure. Rather than generating a plan on the ground that is
converted to spacecraft commands, HSTS generated a par-
tially ordered, flexible time network of activities which was
dynamically converted into spacecraft commands by an exe-
cution system (Pell et al. 1997). The domain and goals were
modeled in the DDL language. A Timeline based represen-
tation where the values of state variables evolve over time.
Constraints between state variables are set with compatibil-
ities. The state variable approach differs from the predicate
based representation used in STRIPS or PDDL where in DDL
time and constraints are represented and treated separately.

The Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) system has been applied to a
number of domains, including highly successful, opera-
tional use on-board the Earth Observer 1 spacecraft, (EO-

1) activated in January of 2004 (Rabideau et al. 2006;
Chien et al. 2000). CASPER is similar to HSTS in that they
both represent activities on timelines and use consistency
with a domain model to determine if a plan is valid. How
they are used is very different. HSTS generates a plan to
meet a set of goals and then exits. If execution of the plan
fails, HSTS starts a new planning problem. CASPER is used
in an iterative plan repair fashion. As a plan is executed,
CASPER is fed information about the state of the spacecraft
and continuously checks it against what is expected from
the plan. If the actual state and the remaining plan are not
consistent, CASPER repairs the plan. Repairs may include
adding, deleting or rescheduling actions, adding temporal
constraints, or changing activity parameters. New goals are
handled in the same way; CASPER attempts to make repairs
to the plan so that it is consistent with achieving the modified
set of goals for the plan. On EO-1, the ability to smoothly
add additional goals is used to perform autonomous science
re-targeting. On-board algorithms scan images of the Earth
for rapid changes involving cloud cover, flooding, or thermal
emissions from fires or volcanoes. When a promising can-
didate is detected, goals to image the area are added to the
plan and CASPER attempts to repair the plan to accommo-
date them. CASPER has become the primary mission opera-
tions tool and continues to operate as of this writing. To date,
it has processed 107758 goals, and planned 13528 images,
including 1330 triggered by on-board science processing.

Smart-1 (Camino et al. 2005) belongs to an ESA Small
Mission for Advance Research and Technology. One of the
aspects they want to consider was to reduce the workload
on ground, by mean of the Mission Planning System (MPS).
The purpose of the MPS is to ensure the consistency of the
operations request against a variety of operational and space-
craft resource constraints, such as power, storage, downlink
capacity, prior to generating the required telecommand stack
for uplink. The functionality of the MPS goes beyond pay-
load scheduling by integrating operations defined by Flight
Dynamics, the Station Scheduling Office and the Flight Con-
trol Team into a single, consistent mission plan.

The EUROPA planner (Frank & Jonsson 2003) is used
in such a mixed-initiative mode on the Mars Exploration
Rover (MER) mission (Bresina et al. 2005). EUROPA is a
framework for representing and solving CSPs, with an em-
phasis on temporal constraint networks, which is descended
from HSTS. For the MER mission, the EUROPA planning en-
gine was used within an end-user planning application called
MAPGEN (Ai-Chang et al. 2004). MAPGEN includes numer-
ous additions and control strategies to the basic planner to
adapt it to a mixed-initiative role. For example, a key to
dealing with oversubscription and the negotiation process
was enabling the user to incrementally plan. The user re-
quests a plan for a set of goals, understands the resulting
plan and potentially makes adjustments to it, then adds ad-
ditional goals. The planner then returns a plan for all of
the goals, or rejects the new goals as unsatisfiable. This in
turn was made possible by the development of a minimum
perturbation heuristic, which specifies that given an existing
plan and an additional goal, the plan to achieve all of the
goals of the existing plan plus the new goal should resem-



System Mission Year Used Comments
DEVISER Voyager 1977 Ground Users edit Deviser plan into final sequence
PLANIT-II Galileo 1995 Ground Plan careful data mgmt due to antenna fault

Mars Pathfinder 1997 Ground Mars surface ops
Spitzer space telescope 2003 Ground Integrated with Hubble-heritage schedulers

HSTS Deep Space 1 1998 On Board Short experiment. First on board planner.
ASPEN AMM-2 2000 Ground Plan campaigns for mapping satellite
APSEN & CASPER Earth Orbiter 1 2003 On Board On-board replan for science opportunities
MISSION PLANNING SYS Smart-1 2003 Ground
EUROPA/MAPGEN Mars Exp. Rovers 2003 Ground Mixed initiative, min-perturb heuristic
MEXAR-2 Mars-Express 2005 Ground
EUROPA 2/ENSEMBLE Phoenix Mars Lander 2007 Ground Manipulate infeasible plans,

Mars Science Lab 2009 Ground domain model is generated
PROBA Proba 2001 On Board Energy and Memory management

Table 1: Selected missions with operational or experimental use of P&S technology

ble the existing plan as closely as possible. This prevented
what users less-than-affectionately termed “the blender ef-
fect” where, after one had just spent a considerable amount
of time understanding and adjusting a plan, adding a simple
and seemingly unrelated goal would result in a completely
different plan due to due to arbitrary choices in the search
mechanism inside the planner. With these mixed-initiative
enhancements, EUROPA and MAPGEN have generated thou-
sands of plans for the highly successful MER rovers, and
continue to do so as of this writing.

The Phoenix Mars Lander and Mars Science Labora-
tory missions use the EUROPA 2 planning engine within
the ENSEMBLE tactical planning system (Bresina & Mor-
ris 2006). EUROPA 2 is a high performance planning system
descended from EUROPA that uses the same style of con-
straint and interval-based plan generation. ENSEMBLE in
turn builds on the progress and lessons learned via employ-
ing MAPGEN and other MER tools for tactical rover planning.
Of the many enhancements in the evolution, one of the most
significant is the ability to work with infeasible plans. That
is to say, rather than rejecting goals that cannot be met, the
planner simply notes the way in which the unsatisfied goals
(rover activities in this case) are inconsistent with the do-
main model (Morris & Bresina 2008). Intuitively, the plan-
ner might report that two activities are attempting to move
the rover’s arm at once, or that communication with Earth,
which requires the rover to be stationary, is constrained to
be at the same time as a rover drive. This is a significant
improvement over goal rejection aimed at the Phoenix mis-
sion requirement that the planning system “shall not fight
with the user”. First, it allows the user to understand why
the desired set of goals cannot all be met at once, then ei-
ther choose goals to remove or ask Europa 2 to repair the
plan. Second, it allows the user to ignore changes the plan-
ner would like to make to the plan. EUROPA 2 and the EN-
SEMBLE system have been delivered to the PHOENIX mis-
sion and are awaiting the landing in May 2008. Deliveries
for MSL will continue through launch in 2009.

The Mars-Express Scheduling Architecture
(Mexar2) (Cesta et al. 2007), is an AI-based ground
tool in daily use on the ESA Mars-Express mission since
February 2005. It solves the memory-dumping problem that

consists of planning sequences of dump activities which
specify the packet store and the amount of data to download
in any available time interval.

ESA’s PROBA (Creasy & Teston 2001) is a micro-satellite
built with a double goal: space environment investigation
and Earth observation, and on-board operational autonomy.
It performs autonomous guidance, navigation, control, on
board scheduling and payload resources management. Its
payload includes a compact multi-spectral imager and high-
resolution camera. It predicts on board energy and memory
resources using algorithms from the Operational Research
(OR) area.

Possible Trends
One recurring theme is the need for planning software and
users to generate plans in a mixed-initiative (cooperative)
fashion. Traditionally, the planning problem is posed as ac-
cepting a set of goals and automatically generating a fea-
sible plan In many cases, this breaks down for several rea-
sons. First, the initial goals often oversubscribe the space-
craft’s resources. Users need to explore and negotiate which
goals to remove rather than having the planner decide. Sec-
ond, it’s important for the user to examine infeasible plans,
view plan flaws, and determine which activities to remove
or what other repair strategy to consider. Third, during op-
erations domain modeling bugs are discovered and mission
managers decide that in certain cases a constraint in the do-
main model should be ignored. Thus the planner must be
able to work with infeasible plans and users must be able
to ignore changes or advice the planner is providing, investi-
gate plan flaws, and quickly add new operating rules or relax
others for special circumstances.

We also believe scheduling is the bigger issue than plan-
ning in the traditional sense. To achieve a goal, there are
not typically lengthy sequences of actions with many alter-
natives. Instead, there are many independent goals that are
easy to achieve individually, but interact with each other in
complex ways through the resources limitations and operat-
ing constraints.

Finally, the ability of spacecraft to accommodate branches
in execution often exceeds the ability for users to evaluate
their impact to resources and constraints. Helping operators



to manage and evaluate contingencies, in the spirit of “If the
plan completes early or fails at this step, do these useful low-
risk activities” might be a popular evolution, and more in
line with the careful way spacecraft are operated than the fa-
miliar formulation of automatically choosing contingencies
to ensure the primary goal is achieved.

Intelligent Execution Systems
Traditional autonomous control architectures are often based
on 3 tiers (sometimes generically referred to as 3T architec-
tures). The lowest tier constitutes the functional layer, that
is, the interface between software and the hardware func-
tionality of the spacecraft or other system. The top tier is the
AI P&S system that takes several mission goals, finds activ-
ities to meet them, and schedules them for execution over an
extended period of time, having in mind the resources avail-
able. The middle tier is an executive that can run procedures
that achieve mission goals as guided by the plan.

Then, an executive is a software component that real-
izes preplanned actions. Executives are particularly useful
in the presence of uncertainty. An executive can be seen
as an onboard system that takes the actions of a plan and
their expected outcomes (assuming a certain level of cer-
tainty) as input and manages their execution in an uncertain
and possibly dynamic environment. The technology varies
from systems that execute simple linear sequences of com-
mands (Verma et al. 2005a), to complex systems (Aschwan-
den et al. 2006) that can plan and schedule in reaction to
unexpected changes that endanger completion of the plan.

These systems require a language for the plans, actions
and commands they will manage. They may also represent
interdependence between actions in terms of precedence or
other constraints, in addition to the expected effects of ex-
ecuted commands in order to monitor progress. We can
differentiate two types of languages: procedural or declar-
ative. Procedural execution languages are used to develop
real world software where loops, branching and parallel ex-
ecution are needed. Conceptually they specify how the exe-
cution should proceed, and thus are often at too low a level
to be generated by a planner. For that reason the declara-
tive languages use more a expressive representation of ac-
tions that focus on what the actions are rather than how they
are to be executed. The intent is for the executive’s seman-
tics of execution to interpreting the actions and yield a ro-
bust behavior not achieved with traditional execution scripts.
This requires significantly more modeling by the user and
many constructs such as looping and branching cannot be
expressed in a natural way.

As we did for Planning and Scheduling system, we next
survey executive systems that have been used in space-
craft operations and then discuss possible trends. Although
the literature identifies three categories of executive sys-
tems (Verma et al. 2005b), in our survey we discuss only
two:

• Execution-only systems: The system accepts actions or
commands for execution, but does not explicitly exchange
information with an automated planner

• Execution systems coupled with an external planner: the

systems have explicit interfaces to planners through an ex-
ecution language or a standard plan format

Execution Systems in Practice
Spacecraft perform actions initiated by commands. The flex-
ibility of the way commands are specified, and the software
that must be developed to execute them varies. The simplest
approach is direct commanding where commands are sent
via radio from mission operators on the ground and executed
immediately. This is the simplest method, but is still used,
for example in low-earth orbit missions or to perform house-
keeping activities during a long cruise phase of an inter-
planetary mission. For deep space missions, light-time de-
lays and contention over the deep space network keeps us
from performing large amounts of commanding in this way.
In this case, time tagged commands allow us to send a se-
quence of commands each with a time tag all at once. At the
appropriate time, each command is executed. Greater flex-
ibility is afforded by event-based sequences, where timing
of commands may be relative to external events, calculated
durations or completion of other commands. The majority
of spacecraft have used some variation of direct, time-based
or event-based execution of command sequences to great ef-
fect. This is the case of the Proba and Smart ESA missions.

Table 2 lists a representative set execution systems that go
beyond these methods, and the missions for which they have
been in experimental or operational use.

The Spacecraft Command Language (Gaasbeck, Posner,
& Buckley 1999) has been used on numerous missions, be-
ginning with the Clementine lunar orbiter. It allows for
time-tagged and event-based commanding. It’s unique in the
execution systems discussed here in that it provides a rule
system that allows a procedure to be fired when conditions
match a rule. This may be used for responding to anoma-
lies. The SCL was used on the FUSE spacecraft from 1999
until it was de-commissioned in 2007 (Sahnow et al. 2000),
as well as the EO-1 spacecraft, where it was integrated with
CASPER to perform on-board re-planning to train science in-
struments on potentially interesting phenomena detected by
on-board image analysis algorithms (Chien et al. 2005).

The highly successful MER rovers use flight software de-
scended from the 1996 Mars Pathfinder lander, and in turn
serves as the basis for the upcoming MSL rover (Reeves
2006). The sequence execution module of the flight soft-
ware accepts a master sequence from mission operators. The
master may spawn and kill subordinate sequences running
on parallel execution engines, and a newly-uploaded mas-
ter sequence may make use of sequences from a library that
is managed on-board the spacecraft. Synchronization be-
tween executing sequences is provided by constructs that
wait for a given time or duration, or wait for a shared vari-
able to take on a value, enabling both time-based and event-
based coordination of sequences. One of the most interest-
ing aspects of the execution module is that it manages se-
quences of behaviors provided by high-level spacecraft ser-
vices, rather than traditional sequences of individual space-
craft commands. This system has been running the MER
spacecraft/rovers since launch, approaching 5 years as of the
date of this writing.



Executive Mission Year Comments
SCL Clementine 1994 Time and event-based commanding.

FUSE 1999 Rule-based firing of procedures
Earth Orbiter 1 2001 Integrated with on-board science planning
others

MPF/MER/MSL Family Mars Pathfinder Lander 1996 Manages execution of behaviors rather than
Mars Exploration Rovers 2003 individual spacecraft commands. Similar to 3T.
Mars Science Lab Rover 2009

Remote Agent Exec Deep Space 1 1998 Experiment. Integrated with HSTS and Livingstone FDIR system
VML Mars Odyssey 2001

Spitzer Space Telescope 2003
Phoenix Mars Lander 2007
Mars Recon, others

Table 2: Operational and experimental execution systems for selected missions

The Remote Agent Exec (Pell et al. 1998) accepted a plan
for execution in the form of activities and conditions (collec-
tively referred to as tokens) on parallel timelines, each with
flexible start and end times. Also included were constraints
between tokens, for example requiring that a condition (e.g.
the camera power is on) meets the start of an activity (e.g.
use of the camera) or that one activity must be completed
before another (e.g. engine thrusting must complete before
science images are taken). For each activity, the Exec would
attempt to achieve the conditions that must persist before
it, then execute it. When attempting to achieve or maintain
conditions, the Exec would make use of the Livingstone di-
agnosis and recovery system. If conditions needed for an
activity failed to hold during its execution, the Exec would
suspend the activity and attempt to re-achieve the condition
with Livingstone. If the Exec could not re-achieve initial or
maintained conditions, it would fail the plan and re-invoke
the HSTS planner. The Remote Agent Exec was activated in
May 1999 on DS-1 for a 20 hour test and a 6 hour test. Three
plans were executed, including three simulated failures with
recoveries coordinated with Livingstone and one simulated
unrecoverable failure that required generation of a new plan
in coordination with HSTS.

Another approach is the sequencing procedural ap-
proach represented by the Virtual Machine Language
(VML) (Grasso 2002). Sequences can have parameters and
the capacity to branch and loop. They are also called func-
tions and they are executed in engines or virtual machines
that have two purposes: storing and executing sequences.
Just one sequence can be executed at a time in each engine,
so in order to obtain parallelism, several (limited) engines
are provided for each mission. VML allows looping, con-
ditionals, and use of code blocks. This allows VML se-
quences to make some adaptation to execution conditions
rather than always relying on worst-case assumptions, with-
out making the step to a full-blown intelligent execution sys-
tem. VML has flown on numerous NASA spacecraft such as
the Spitzer space telescope, Mars Odyssey, Mars Reconnais-
sance Orbiter, Dawn, Genesis, and Stardust. It is slated for
future New Frontier and Discovery class missions, such as
the Phoenix Mars Lander.

Possible Trends

Concepts from execution research have been transitioning
to practice, but fielded systems tend to favor simplicity,
focusing on monitoring of execution rather than dynamic
rescheduling or other responses to execution problems. Ex-
ecutives are usually script languages with simple iterative
sentences as loops or branching. Estimating bounds on
resource usage and duration, often through simulation, is
important for spacecraft, and eased by simpler semantics.
In practice, uncertainty about real-time execution is often
handled with conservative resource and duration margins.
If a plan executes more quickly than expected, the space-
craft may wait for further instructions. On the MER rovers
“bonus activities” are appended to the end of a plan but
the expected duration is not increased. If the plan executes
quickly, bonus activities are executed until the expected
duration expires. Future missions have expressed interest
in solving this problem simply but somewhat more gener-
ally. Missions are also carrying increasingly complex instru-
ments, often with their own processors, scripting languages
and conditional execution. This trend only accelerates the
need for simple synchronization constructs to coordinate the
operation of multiple independent operations.

Fault Protection Systems

As Neilson points out in an excellent overview of the MER
fault protection system, (Neilson 2005) fault protection in
an engineering process that incorporates robustness to faults
into spacecraft hardware, software, systems engineering and
operations. The on-board system for active fault detection,
isolation and recovery (FDIR) of possible faults is one out-
put of this process. For most spacecraft, at least a portion
of the FDIR system is in hardware. For example, the MER
rovers have software-based FDIR systems, but rely on hard-
ware controllers to disconnect the batteries should a hard-
ware fault or software problem drain them to a dangerous
level. For the remainder of this section, we will focus on on-
board FDIR software, keeping in mind it is only a portion of
the overall fault protection system for a spacecraft.



Fault Protection Systems in Practice
On the two MER rovers, subsystem behaviors incorporate
subsystem level fault protection. If the rover’s arm (IDD)
draws more than the allowed current during use, it is marked
failed. The IDD behavior ignores any subsequent requests
to use the arm, and the rover driving behavior is disabled
if the IDD is not stowed away. During the next communi-
cation cycle (typically the next day), ground operators can
inspect telemetry and debug the IDD before re-enabling it.
The MER system also includes a set of system-level fault re-
sponses for when disabling a behavior for a particular sub-
system is not sufficient. These involve battery undervolt-
ages, overheating, and the like that may indicate a serious
problem with rover hardware needed for survival. In these
cases, the system-level fault protection software and hard-
ware cooperate to put the rover into a state where it pre-
serves power and has periodic opportunities to communicate
with Earth at known times. This approach has the advantage
that for most subsystem failures, the nominal behaviors and
fault protection are integrated into a localized module. This
system has protected the MER rovers for approaching five
years. A great summary of anomalies encountered by the
rovers in the first 780 sols (Martian days) of operation is
available (Matijevic & Dewell 2006).

The Livingstone and Livingstone 2 systems are model-
based diagnosis and recovery systems, where a generic soft-
ware engine or set of principles is developed in the hope of
addressing a large class of diagnosis problems(de Kleer &
Williams 1989). These systems are adapted to a specific di-
agnosis problem via an addition of a model of the nominal
and failure behaviors of the components they will diagnose.
Livingstone is fed the commands given to the spacecraft
hardware, and uses the model to predict the expected values
of on-board sensors (e.g. switch status bits, temperature sen-
sors, pressure transducers, etc.). If there is a discrepancy be-
tween the expected and observed sensors, Livingstone uses
the model to find the most likely combination of failures that
predict the observed sensor values. Using the same model,
it can then determine if there is a way of achieving a desired
state (e.g. transmitting data) using a different configuration
of the system (e.g. switch from UHF to X-Band communi-
cation). The desired advantage is a spacecraft can “fail oper-
ational”, that is after a failure or anomaly, a goal given to the
spacecraft can still be achieved by diagnosing the source of
the anomaly, determining what resources remain available,
and reconfiguring the spacecraft to execute with the avail-
able resources rather than moving to a standby mode. The
disadvantage is a significant amount of modeling. Living-
stone must be able to predict both the nominal and failure
behavior of components that it will diagnose and recovery,
as opposed to recognizing a failure signature. In addition,
there is a loss of predictability as the system is generating
diagnoses and recoveries and then continuing operations, in-
stead of mapping known failure signatures to responses and
safing. Livingstone was activated in May 1999 on DS-1 for
a 20 hour test and a 6 hour test. During the test Livingstone
was fed simulated sensor readings consistent with a set of
four pre-determined failure scenarios: switch position indi-
cator failed, camera power switch stuck on, science instru-

ment not responding and thruster stuck closed. In the first
case, Livingstone ignored the sensor, and in the remaining
cases recommended recoveries of re-trying the command,
power-cycling the instrument, and switching thruster con-
trol modes, respectively. Livingstone 2 was activated on the
EO-1 spacecraft for a total of 143 days in 2004 and 2005 and
diagnosed 13 simulated failures (Hayden 2004).

Possible Trends
As with planning technology, model-based diagnosis was
demonstrated on DS-1 and EO-1, as well as on testbeds and
simulators for the X-34 and X-37 vehicles and many other
systems. Yet to our knowledge, no spacecraft has flown this
type of general purpose diagnosis and recovery engine as
part of a baseline fault protection system. We believe there
are relatively simple explanations. One hope for systems
like Livingstone was that they could increase science return
during routine operations by automatically returning space-
craft to operations. The summary of MER anomalies sug-
gests the rovers have lost less than 3% of operating time to
anomalies, and for many of those (e.g. stuck in the sand)
it’s not clear a system like Livingstone would help. Thus
it seems fair to question the cost and risk of adding “fail
operational” capabilities and continuing to execute after an
anomaly. A second hope was that during critical periods
such as orbital insertion where one has to continue operat-
ing in the face of anomalies, the ability of a model-based
diagnosis system to generate novel diagnostic combinations
could save a mission. For periods where a misstep could re-
sult in mission loss, one has to weigh the potential benefit of
generating novel responses to less likely failures against a set
of carefully engineered and validated responses to a smaller
set of more likely failure scenarios. A broader discussion of
this issue is found in (Kurien & R-Moreno 2008).

Conclusions
This paper has presented an overview of techniques ap-
plied to Autonomy for Aerospace. Among the techniques
we have described AI Planning and Scheduling, Intelligent
Execution and Model-Based Diagnosis. We have also pre-
sented and described the NASA and ESA missions using
these techniques. Finally, the authors envisioned what they
thought possible trends in each area would be.
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